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Abstract— In many different application domains, image 
fusion is widely acknowledged as a helpful technique for 
enhancing overall system performance.  These application 
fields include, but are not limited to, remote sensing, traffic 
control, machine learning, health care applications, combat 
surveillance, detection of disguised munitions, and 
identification of faults in non-destructive testing.  The amount 
of scholarly literature on the topic of medical image fusion has 
significantly increased during the last several years.  Image 
fusion has grown in importance as a component of the 
commonly used image processing applications because to the 
large variety of capture devices that are currently available. 
Image fusion is the process of matching relevant information 
from several sensors using various mathematical models to 
create a single composite image.  Combining data from many 
sensors, multiple viewpoints, and various temporal dimensions 
into a single image is known as image fusion.  This preserves 
the integrity of important characteristics while improving the 
quality of the image.  Robot vision, aerial, satellite, and medical 
imaging, as well as robot and vehicle navigation, are just a few 
of the many applications that heavily depend on this stage.  
This study examines many cutting-edge picture fusion methods 
at various levels, along with the benefits and drawbacks of 
each. It also explores several transform-based and spatial 
approaches with quality measures and their applicability 
across various industries.  Finally, this study's results have 
shown several potential future application avenues, such as 
picture fusion applications. 
 
Index Terms—Medical CT and MR image fusion, adaptive 
structure decomposition (ASD), MI, SSIM, EN. 

I. INTRODUCTION 
Due in large part to the expansion and variety of image 
collecting techniques, image fusion is becoming more 
necessary in contemporary computer imaging systems.  
Image fusion is the process of using mathematical methods 
to combine important data from several sensors to create a 
complete composite image.  The purpose of this composite 
picture is to make it more useful and useful for computer 
vision applications as well as human operators.  Thus, the 
purpose of this chapter is to go over the main theories, 
classifications, kinds, and uses that support the idea of 
picture fusion. 
 
The five basic human senses—skin, tongue, nose, ears, and 
eyes—collect information mostly on their own.  The human 
brain instinctively compiles this data into a clear picture of 
the surroundings, which facilitates job performance and 
governance [1].  Such a circumstance is generally referred to 
as data fusion.  Similarly, an independent picture of the 
target scene does not reliably give sufficient details about 
the desired area in digital image processing.  To do this, two 
or more images of the same object must be gathered.  

Combining sensors of the same or distinct modalities with 
varying optical configurations, focal lengths, and exposure 
periods may result in the acquisition of thus many pictures. 
However, due to the limiting depth of field of each sensor, 
the focus on all target items often varies [2-5].  Due to this 
limited capacity to perceive extra aspects of the target that 
are present in a picture, the human brain is unable to more 
accurately construct and explain the composite image of the 
intended location.  Therefore, to provide a more realistic 
portrayal of the targeted portion, these several obtained 
photos with limited and distinct information should be 
integrated into a single image rather than being displayed as 
separate source images.  The use of picture fusion is 
required in these situations [6-7]. 
 
Images from many sensors are combined in a new field 
called image fusion (IF) to provide an informative image 
that might be utilized for decision-making [7].  The visual 
and analytical quality of a picture can be improved by 
combining many photographs.  By eliminating all pertinent 
information from images and preventing errors in the final 
image, effective image fusion can retain crucial information.  
Following fusion, the merged picture is more suited for both 
human and machine perception.  The first step of fusion is 
image registration, which involves comparing the source 
and reference pictures.  With this kind of mapping, a 
comparable image is matched for further analysis based on 
trustworthy attributes.  IF and IR are recognized as crucial 
instruments for the generation of important information in a 
wide range of fields [8]. According to the literature, the 
number of scholarly papers has grown dramatically since 
2011, peaking at 21,672 in 2019. The growing need for 
low-cost, high-performance image fusion algorithms may be 
the cause of this rapidly expanding trend. There are several 
strategies to increase the efficacy of picture fusion, 
including recently reported techniques like sparse 
representation and multi-scale decomposition. Due to 
variations in linked images in different applications, an 
efficient fusion approach is necessary. For example, more 
and more satellites are being deployed in the field of remote 
sensing to take aerial photos with various temporal, spatial, 
and spectral resolutions.  The IF is essentially a collection of 
image data gathered using various imaging parameters, such 
as spectral response, camera location, dynamic range, 
aperture settings, or the use of polarization filters.  The 
pertinent information from various photos is extracted using 
appropriate image fusion algorithms, and this information 
may then be used for quality analysis, autonomous driving, 
traffic management, or reconnaissance. 
 
Clinicians have been able to learn about the soft tissue, 
structural features, and other aspects of the human body 
through imaging techniques such as computed tomography 
(CT), magnetic resonance imaging (MRI), positron emission 
tomography (PET), and single-photon emission computed 
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tomography (SPECT). Different sensors gather different 
image data for the same part, and different imaging 
technologies preserve distinct properties. Enhancing 
contrast, fusion quality, and overall perception is the aim of 
the fusion. The following requirements must be fulfilled by 
the fusion result: (a) the fused image must preserve all of the 
information from the original images; (b) it must not create 
any artificial information, like artifacts; and (c) bad states, 
like noise and mis-registration, must be avoided [9]. 
 
The transform domain and the spatial domain are separated 
in conventional medical picture fusion methods.  The first 
studies focused on medical picture fusion methods based on 
spatial domains.  Principal analysis and HIS are two 
common methods.  The integrated pictures created using 
spatial domain technology, on the other hand, show both 
spectral and spatial distortion [10].  Researchers are working 
on the transform domain to improve fusion effects.  It 
performs reconstruction techniques after transforming the 
original picture into the frequency domain or other domains 
to merge them.  The four levels that comprise the fusion 
process are the signal, feature, symbol, and pixel level.  
These days, pixel-level transformations including pyramid 
transform, contour transformation, and discrete wavelet 
transform are commonly employed.  
 
The transform domain-based method produces noise during 
fusion processing, but it has the advantages of good 
structure and minimal distortion. Consequently, denoising 
also hinders image fusion [11]. The suggested fusion 
technique almost never uses the spatial domain alone, as is 
evident from the papers released in the past two years. 
Nonetheless, a lot of new approaches combine spatial 
domain and transform domain approaches, as PCA-DWT 
[12,]. A deep learning-based method for merging medical 
pictures emerged as a result of the deep learning boom in 
2017.  Convolutional neural networks (CNNs), recurrent 
neural networks (RNNs), U-Net networks, GANs, and other 
deep learning models have been used in medical picture 
registration and segmentation in recent years.  However, 
medical image fusion has only employed CNNs and U-Net 
networks.  A convolutional neural network, a type of neural 
network used for image processing, consists of three layers: 
a convolutional layer, a pooling layer, and a fully connected 
layer.  Deep learning frameworks like Tensorflow, 
MatConvNet, and Caffe are used in medical picture fusion.  
The U-Net network is currently trained using the Pytorch 
deep learning framework. 
 
IMAGE FUSION LEVELS 
There are multiple levels of information representation 
where the precise fusion process can occur. Based on the 
level of abstraction, three distinct levels, namely pixel, 
feature, and decision levels, can be used to achieve image 
fusion. The framework for the IF process is depicted in 
Figure 1. Firstly, multiple images of external scenes are 
captured utilizing a single sensor or multiple sensors and 
noise/artifacts introduced during the acquisition process are 
removed. Then, to facilitate with the image fusion process, 
image registration is a procedure of mapping the source 
images with the aid of a reference image to match the 
related images pursuant to specific features. [4] 

 
Figure 1: Generic block diagram representing the process of 

image fusion 
 

PIXEL-LEVEL IMAGE FUSION (PLIF) 
"Image fusion at the pixel level," or fusion at the lowest 
processing level, is the phrase used to describe the 
combining of empirically established parameters.  An 
ensemble of pixels from each of the source pictures is 
utilized to create each individual pixel in the fused image.  
Pixel-by-pixel fusion requires sub-pixel-by-pixel perfect 
registration of each source picture.  In order to ensure that 
the data from each source belongs to the same physical 
components in the actual world, image registration is an 
essential pre-processing step for pixel-fusion algorithms, as 
was previously mentioned [13]. 
 
FEATURE-LEVEL IMAGE FUSION (FLIF) 
Using this technique, pictures are divided into many areas 
from which different characteristics (such edges, textures, 
and minute details) are extracted.  As a result, the fusion 
depends on characteristics that are extracted that are more 
informative and characterize the content of an image, 
instead of employing pixels that are more confident.  The 
relevant data is then combined into a single feature vector 
using neural networks, Support Vector Machines (SVM), 
and clustering techniques.  Machine learning, region-based, 
and content-based similarity matching are the three other 
subcategories of the FLIF approach.  The most extensively 
studied techniques, region-based approaches, offer the 
chance to adjust the segmented regions of interest (ROI) to 
semantic standards that are helpful in mitigating spatial 
distortions. Three alternative methods are accustomed to 
performing region-based image fusion: (1) the region 
partition: employed in medical image fusion applications to 
produce superior fusion outcomes. (2) statistical and 
estimation-based algorithms: primarily appropriate for 
multi-focus image fusion applications and (3) focus region 
detection and saliency map-based algorithms: is versatile 
and has a wide range of uses [14]. 
 
DECISION-LEVEL IMAGE FUSION (DLIF) 
This is the topmost level for fusing images. The input source 
images are first processed independently for feature 
extraction and identification before being classed using local 
classifiers. The features are then integrated by using fuzzy 
logic, evidence-based reasoning, statistics, voting, 
heuristics, and artificial intelligence. In a newest study, 
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decision-level fusion algorithms were divided into two 
categories: (1) soft fusion, where the classifier provides a 
number to indicate how confident it is in the judgement; and 
(2) hard fusion, where logical information (such as class 
membership) values are combined. The paramount obstacle 
at this level is the exigency for prior information, which is 
challenging to acquire because the environment and the 
target's features are changing. As a result, algorithms are 
typically difficult to implement in this highest IF level [15]. 
 

Table 1: Brief comparison of different levels of image 
fusion 

 
Characteristic

s 
Pixel Level Feature Level Decision 

Level 
Nature of 

sensory data 
Multiple 
images 

Features 
extracted from 

images 

Symbol to 
represent a 
Decision 

Level of data 
interpretation 

Low Medium High 

Registration 
level: 

Spatial 
Temporal 

High 
Medium 

Medium 
Medium 

Low 
Low 

Registration 
method: 
Spatial 

Temporal 

Shared optics 
or coalignment 

of sensors 
Synchronizatio

n 

Geometrical 
modifications 

Synchronizatio
n 

If applicable, 
Symbol's 

spatial 
characteristics 

Symbol's 
Temporal 

characteristics 
Fusion method Image 

estimation or 
pixel attribute 
combination 

Geometrical or 
temporal 

correspondence
, and 

feature 
attribute 

combination 

Logical and 
statistical 
inference 

Advantages • Executable in 
both the spatial 
and transform 

domains 
• More 

computationall
y 

efficient  
• Preserves 
information 

content more 
accurately 
• Easy to 

implement 

• Improve 
image quality 
(information 
content and 

image contrast) 
• Extract newer 

features 
• Less 

responsive to 
noise 

• Strongly 
localized 

features are 
better handled 

i.e., allows 
explicit 

handling of 
localization 
uncertainty 

due to 
mis-registratio

n error 
• Need prior 
knowledge 
• Reduced 
processing 

Requirement 
Disadvantages • High 

registration 
requirement 
• Sensitive to 

noise 

• Difficult to 
apply due to 

potential 
heterogeneity 

in 
Retrieved 

characteristics 
from several 
modalities 

• Inter-image 
variability can 
lead to poor 

fusion 
performance 

• Algorithms 
are complex to 

implement 
• Require good 
set of features 

to increase 
accuracy and 
reliability of 

fusion process 

 
Table 1 provides a brief comparison amongst various levels 
at which image fusion is carried out. 

II. FUSION METHODS 
The deep learning-based fusion strategy, transform 
domain-based fusion method, and spatial domain-based 
fusion approach are all covered in this chapter.  As seen in 
Figure 2, 

 

 
Figure 2: Image Fusion Techniques 

 
Transform Domain 
 
In the transform area, which has been the subject of 
significant research in recent years, the multiscale transform 
(MST) theory is the foundation for most medical picture 
fusion algorithms. Decomposition, fusion, and 
reconstruction are the three steps of the MST-based fusion 
technique. To acquire the low-frequency and high-frequency 
coefficients, the transform domain-based medical image 
fusion method transforms the source image from the time 
domain to the frequency domain or other domains.  Discrete 
wavelet, nonsubsampled shearlet, and nonsubsampled 
contourlet transforms are three of the most often utilized 
transformations in medical image fusion systems [17]. 
 
Fusion Based on Nonsubsampled Contourlet Transform 
(NSCT): Do et al. [17] introduced the multiscale contourlet 
transform.  It offers advantages in smoothness processing 
and is suitable for generating multidirectional and 
multiresolution situations.  However, because it lacks 
translation invariance and is prone to creating pseudo-Gibbs 
phenomenon (artefact) around the singular point of the 
reconstructed picture, which causes image distortion, it is 
not the ideal option for image fusion.  For this reason, 
several scholars have carried out more in-depth study.  
Cunha et al. [18] introduced a multiscale decomposition 
technique called nonsubsampled contourlet transform, 
which is an enhancement of contourlet transform. 
Translation invariance and spectral aliasing avoidance are 
two features of NSCT.  Because the original image's 
structural information is retained throughout the 
deconstruction and reconstruction processes, more direction 
information may be recovered.  In recent years, one of the 
most popular techniques in the transform field for medical 
picture fusion has been the nonsubsampled contourlet 
transform.  The NSPFB and NSDFB filters calculate the 
multiscale and multidirection decompositions to produce 
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subband pictures with a range of scales and directions after 
NSCT first breaks down the source image to create the 
coarse and detailed layers. 
 
Fusion Method Based on Discrete Wavelet Transform 
(DWT): The discrete wavelet transform's capacity to 
generate a stable output from a variety of input frequency 
signals and its good placement in the time and frequency 
domains maintain the particular information in the image.  
As a result, when multimodal medical image fusion 
algorithms were first being developed, the discrete wavelet 
transform (DWT) was the technique that was most 
frequently utilized.  The discrete wavelet transform is a 
quantitative and visual fusion technique that overcomes the 
drawbacks of principle component analysis.  DWT-based 
fusion algorithms are most frequently used for MRI and 
PET image fusion, while they may be used for a variety of 
applications [21, 22]. By recovering the intensity component 
from the PET image, the IHS transform lessens color 
distortion and preserves more anatomical details.  After the 
source image has been preprocessed and improved, the 
intensity component of the PET image is extracted using the 
IHS transform, which reduces color distortion and maintains 
more anatomical information.  High- and low-frequency 
subbands are obtained by applying the DWT transform to 
the intensity components of MRI and PET.  The inverse 
DWT transform is employed to create the fused picture after 
the high- and low-frequency subbands are fused using 
different fusion criteria [23]. 
 
Image Fusion Based on Deep Learning 
Deep learning is still in its infancy in the realm of medical 
image fusion research. Krizhevsky et al. [24] suggested the 
convolutional neural network (CNN) as a popular deep 
learning model.  Deep learning is commonly utilized for 
medical picture segmentation and registration, as opposed to 
medical image fusion.  The fusion rules and activity level 
measurement (feature extraction) are flaws in medical image 
fusion systems based on spatial domain and transform 
domain that need artificial design, and their link is very 
weak.  In order to overcome the aforementioned issues, Liu 
et al. employed CNN to image fusion for the first time in 
2017. Their results in the transform and spatial domains 
were promising. In medical image segmentation, the U-Net 
network model is widely used.  Despite being a relatively 
new issue, medical image fusion research technology has 
progressed from 2D to 3D [25] and has shown encouraging 
results in the segmentation of medical images.  
 
An artificial neural network with supervised learning that is 
trainable and multistage feedforward is called a CNN.  
Convolution is a complex procedure.  The first parameter in 
a convolutional network is frequently referred to as an input, 
the second as a kernel function, and the end product as a 
feature map. Three key architectural concepts in CNN are 
sparse representations, also known as sparse weights, 
parameter sharing, and isomorphic representations. 
Conventional neural networks manage link interactions by 
matrix multiplication. Since every input unit has an output 
unit, a sizable amount of storage is needed. The neurons are 
only linked to a few neurons close to the previous stage 
because of the convolutional network's sparse 
representation, and the local convolution operation is used, 
which lowers storage requirements and improves processing 

performance. The nonuniqueness of weights in traditional 
networks is eliminated by CNN's parameter sharing.  
Because its weights remain constant, the CNN stage is 
simpler to store than earlier stages.  Automatic encoders are 
fully linked in the traditional sense of the word. Despite 
U-Net's local connection structure, the source picture and 
vector output are not always spatially aligned. The visual 
impact of the fusion image is increased when the source 
image and vector output are aligned in space. The U-Net is a 
complete convolution network with contraction and 
extension pathways [26]. In-depth learning requires a large 
number of samples for training, however U-Net, which is 
built on a full convolutional neural network, can train a 
small number of instances with data improvement. This 
advantage only addresses the problem of a limited sample 
size of medical image data. 
 

 
 

Figure 2: Schematic diagram based on CNN fusion 
algorithm 

 
Convolutional Neural Networks (CNN) for Image Fusion.  
The fusion technique outlined in [27] is inappropriate for 
medical picture fusion as the intensity of medical pictures 
vary at the same location.  Yu et al. proposed the first 
CNN-based technique for merging medical pictures.  This 
technique generates a weight map using the Siamese 
network.  The CNN model compares patch similarity using 
three models, including the Siamese network.  Since the two 
weight branches of the original picture are similar, the 
techniques for feature extraction and activity level 
measurement are the same.  This has several advantages 
over pseudosiamese and 2-channel models, and the siamese 
model's popularity in fusion applications is also influenced 
by how simple it is to train. Once the weight map is 
obtained, the pyramid transform is used for multiscale 
decomposition, and the Gaussian pyramid decomposition is 
used to make the fusion process more akin to human visual 
perception.  Moreover, the decomposed coefficients are 
adaptively modified using the localized similarity-based 
fusion approach.  The method offers an enhanced fusion 
approach by combining the CNN model with the traditional 
pyramid-based and similarity-based fusion methods.  The 
algorithm is displayed in Figure 2. 
 
This is primarily due to three factors: (a) the requirement for 
a substantial quantity of annotated training set data; (b) the 
drawn-out training procedure; and (c) the complexity of the 
convergence problem and the requirement for frequent 
overfitting corrections.  Liang et al. [28] claim that the 
MCFNet network approach refers to different kinds of 
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medical image histograms and transforms 1.2 million 
natural photographs in ILSVRC 2013 ImageNet into 
medical images with the same texture distribution or 
intensity as training data sets.  Medical image data sets and 
reconstructed data sets are quite comparable.  256 256 
photographs are randomly chosen from the modified images 
and trained using medical images in order to minimize 
overfitting. Future studies will keep concentrating on 
improving this strategy's loss function. 
 
Spatial Domain 
In the early stages of research, medical image fusion 
technology based on spatial domain is a hot issue.  It has a 
straightforward fusion method, and the merged picture may 
be produced by simply applying the fusion rules to the 
pixels of the original image.  The Brovey method, the 
maximum selection method, the minimum selection method, 
the saturation method of hue intensity, the high-pass 
filtering method, the principal component analysis method, 
and the average method are examples of spatial domain 
fusion approaches.  The quantity of research in the medical 
image fusion method's spatial domain has significantly 
decreased in recent years due to spectral and spatial 
distortion in the fused picture of the spatial domain.  In 
order to create novel research techniques, researchers 
frequently use spatial domain fusion processes as part of the 
transformation domain [29]. 
A quick introduction to the highly useful IHS technique will 
be given here. 
 
Munsell, an American scientist, proposed the IHS model, 
which explains the characteristics of the human visual 
system.  It has two characteristics: 
 
(1) The hue and saturation components have a high 
correlation with people's perception of color, but the 
intensity component has nothing to do with the image's 
color information.  Consequently, this method is frequently 
used by researchers to address the color issue in image 
fusion, particularly when merging PET/SPECT pictures with 
color information.  Chen [7] proposed a new technique for 
combining MRI and PET by combining the IHS model with 
the Log-Gabor transform and utilizing IHS to dissect the 
PET picture.  The three basic characteristics of hue (H), 
saturation (S), and intensity (I) are obtained using this 
approach (I).  The Log-Gabor transform, which is made up 
of the logarithmic transformation of the Gabor filter, is used 
to break down the intensity components of MRI and PET 
images into high-frequency and low-frequency subbands. A 
novel approach based on two-level fusion of visibility 
measurement and a weighted average rule is used for the 
fusing of low-frequency subbands, while a unique technique 
is used for the fusion of high-frequency subbands.  A fused 
image is created by inversely HISing the original hue and 
saturation components as well as the inverse Log-Gabor 
transformed component.  It may successfully lessen color 
distortion while preserving the original image's details and 
structures.  In terms of visual perception, this method 
performs better than the previous IHS+FT method.  
Haddadpour et al. [30] suggested a new fusion technique 
that combines the IHS with the two-dimensional Hilbert 
transform. When merging high- and low-frequency 
subbands, the technique introduces the concept of BEMD.  
Bidirectional empirical mode decomposition (BEMD) is a 

kind of empirical mode decomposition that is extended by 
empirical mode decomposition.  Its envelope surface makes 
it widely employed in biomedicine.  The method achieves 
better contrast and color intensity than the PCA and wavelet 
algorithms without any noticeable distortion. Information 
entropy (EN) is rather low, which is one drawback.  Figure 3 
illustrates the IHS domain fusion method, which integrates 
MRI and PET data. 
 

 
Figure 3: Framework diagram based on the IHS domain 

fusion method 

III. THE MULTIMODAL FUSION APPROACH 
The brain's soft tissue anatomy may be determined via 
magnetic resonance imaging, or MRI, but its function 
cannot. The image is incredibly clear and artifact-free due to 
the abundance of protons in the neurological system, fat, 
soft tissue, and articular cartilage defects. Its great spatial 
resolution, lack of radiation harm to the human body, and 
plenty of information make it a valuable tool for clinical 
diagnosis. The MRI image of the bone appears fuzzy due to 
the extremely low proton density in the bone. The CT image 
is referred to as computed tomography imaging. An X-ray is 
used to scan the human body. Because bone tissue absorbs 
density at a higher rate than soft tissue, bone tissue CT 
images are remarkably clear [31]. CT pictures show less 
cartilage information, or anatomical information, because 
X-rays have a low absorption rate and poor permeability in 
soft tissue. Emission of Single-Photons Computed 
Tomography, or SPECT, is a type of functional imaging that 
displays blood flow through veins and arteries as well as the 
metabolism of human tissues and organs. It provides 
information on both benign and malignant tumors and is 
frequently used to diagnose a range of tumor diseases. 
Conversely, SPECT has weak positioning ability and limited 
resolution. Positron Emission Tomography, or PET imaging, 
provides reliable information about blood flow and can be 
used to pinpoint the patient's lesion location. When 
positrons and electrons in the tissue collide, photons are 
produced. PET is used to measure the number of photons in 
the brain, producing a color image of brain function 
information that can be used to detect tumors. Its sensitivity 
is high, but it is challenging to get precise information about 
the position of the brain structure; the lack of soft tissue and 
bone boundary resolution results in very low spatial 
resolution and a high likelihood of spatial distortion. 
 
Examples of imaging method fusions used in medical 
picture fusion include MRI and PET, MRI and CT, MRI and 
SPECT, CT and PET, CT and SPECT, SPECT and PET, 
and MRI-T1 and MRI-T2. The diagnosis of liver metastases, 
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Alzheimer's disease, and brain tumors can be made with 
MRI/PET fusion images; tinnitus patients can benefit from 
MRI/SPECT fusion images for lesion localization and 
vertebral bone metastases; lung cancer can be better 
diagnosed with CT/PET fusion image energy; abdominal 
research can be done with SPECT/PET; and vascular blood 
flow can be diagnosed with ultrasound/MRI. A few hot 
fusion techniques will be the main topic of the sections that 
follow. 
 
MRI and CT Fusion: To make up for the absence of 
information in a single imaging, the benefits of clear soft 
tissue information in MRI images and clear bone 
information in CT images are merged. A guided 
filtering-based MRI and CT fusion approach (GF) was 
proposed by Na et al. [32]. The edge degree and clarity 
problems are fixed in the fused image by extracting feature 
information while preserving the edge information of the 
original image. [33] suggests a method for fusing Frei-Chen 
operators that is based on the NSST domain. Visual 
inspection of the fusion products clearly improves their 
contrast and structural similarity. Additionally, quantitative 
evaluation is an improvement above existing approaches. It 
is challenging to choose the membership degree based on 
the intuitionistic fuzzy inference fusion process. The 
fuzzy-PCNN rule, which was also proposed by Mishra et al., 
uses multiple membership functions to create fuzzy 
membership from specific parts of high-frequency 
coefficients. The high-frequency coefficient is fused using 
the L2 norm set operation, and the fused image's SF, EN, 
and SD have higher values. Following the fusing of MRI/CT 
images in the NSST domain, Singh et al. introduced a novel 
fusion technique that favorably affects visual quality and 
quantitative indicators by utilizing the ripple transform and 
NSST transform cascade. Other methods for MRI/CT image 
fusion include contour transforms based on 
non-subsampling, multiscale, and multiresolution 
techniques. 

IV. MAIN APPLICATIONS IN DIVERSE DOMAINS 
 
Image Fusion is widely used in various application areas. 
The technical areas involve analysis of images and videos 
which falls under the fusion application category. Image 
fusion aims to reduce the corpus of data, with decreased 
redundancy and uncertainty. Image fusion increases 
confidence levels with superior visual outputs and with even 
more reinforced conclusions for further processing. Image 
fusion is more useful for further machine processing [8]. 
The application areas are expanding with the introduction of 
new acquisition devices for scientific research. Image fusion 
has extensively been used in various fields such as computer 
graphics, robotics, situation awareness, Surveillance, target 
tracking, intelligence gathering, person authentication, 
remote sensing and satellite imaging. In addition image 
fusion has also been incorporated in biometrics based 
applications as, face recognition, biometric audio-visual 
speech synchrony, speech recognition, and other application 
areas as video indexing, multi-sensor fusion, information 
retrieval, data mining and machine learning [22]. 
 
Remote Sensing Applications: In addition to the above 
mentioned modalities, it incorporates a number of IF 
techniques that have shown promise in IF applications.  

These methods include light and range detection, the 
intermediate resolution image spectroradiometer, and the 
Synthetic Aperture Radar.  Byun et al. [27] suggested the 
area-based IF method for combining panchromatic, 
multispectral, and synthetic aperture radar images.  Landsat 
and intermediate resolution imaging spectroradiometer data 
are combined to generate synthetic Landsat imagery using a 
high spatial approach and temporal data fusion.  
Furthermore, a mixture of spectrum information has recently 
been used to study the synthesis of air-bone hyper-spectral 
and Light Detection and Ranging (LiDAR) data. Earth 
imaging satellites such as Quickbird, Worldview-2, and 
IKONOS have contributed several datasets for 
pansharpening applications. 
 
Applications in the Medical Domain: A collection of brain 
pictures from registered CT and MRI scans has been made 
available by Harvard Medical School.  Figure 4 illustrates 
the use of IF in medical diagnosis by combining CT and 
MRI images.  The CT scan captures bone structures with 
great spatial resolutions, whereas the MRI captures soft 
tissue structures such as the brain, eyes, and heart [28].  The 
accuracy and therapeutic value of CT and MRI scans can be 
improved by combining them with IF techniques.  The most 
difficult task in this field is also completed like follows: 
 
(1) There aren't any IF techniques for medical emergencies. 
(2) Estimation of objective image fusion effectiveness  
(3) Mis-registration 
 

 
Figure 4: Examples of IF in medical diagnosis domain. a) 

MRI b) CT c) Fused image 
 
The radiological imaging techniques have refined 
multi-folds in recent past. The same organ, tissue or tumor is 
captured using different radiological devices, under varied 
conditions. Availability of different modalities, helps to 
capture complimentary information, from organs, leading to 
disclosure of additional critical content to fill the missing 
gaps in clinical diagnostic analysis for superior diagnosis. It 
is very important to extract all the possible information. This 
acquisition of clinical content from multiple perspectives 
and medical modalities adds up to the bulk of clinical data. 
Medical image fusion technique unites multiple modalities 
into a single composite image. It brings about patient data 
which may be acquired from single or multiple modalities in 
order to device a single fused image, rich in clinical content, 
enhanced in texture, features and anatomical details. The 
purpose aims to reduce the amount of data to be processed, 
preserving all possible diagnostic content without loss or 
artifacts. This is turn reduces redundancy and uncertainty in 
medical analysis and direct towards higher degree of 
diagnostic confidence to keep the quality intact. The fused 
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image must be superior in comparison to the original; else 
the fusion shall be deemed to be irrelevant with respect to 
domain performance or diagnosis. Image fusion is a 
complex mechanism and becomes even more critical using 
neurological images. Pictorially the fusion components are 
described in figure 5. 

 

 
Figure 5: Image Fusion Components 

 
Surveillance Domain Applications: Figure 6 illustrates the 
fusion of visible and infrared pictures as an illustration of IF 
in the surveillance sector.  It can "see in the dark" even 
when there is no light because of its high temperature, which 
makes it sensitive to things.  The limited spatial resolution 
of infrared pictures can be solved by combining visible and 
infrared images using a fusion approach.  Additionally, 
merging visible and infrared photos has solved a difficulty 
in military reconnaissance, picture dehazing, and facial 
identification.  The primary obstacles in this field are as 
follows: 
 
(1) Computing efficiency  
(2) Imperfect environmental conditions 
 

 
 

Figure 6: Examples of IF in surveillance domain. a) Visible 
image b) Infrared image c) Fused image 

 
Photography Domain Applications: Figure 7 illustrates 
the merging of multi-focus photos as an illustration of image 
fusion (IF) in the photography business.  Since the cameras 
have smaller depths than conventional cameras, it is 
impossible to focus on everything that is at different 
distances from the camera in a single image.  It is 
impossible to get every object in focus inside a single 
camera picture for every potential distance between the 
objects because of the camera's limited depths [29–30]. 
Utilizing the multi-focus IF approach, which combines 
many images of the same subject captured at various focus 
points to create a single fully in-focus image, is the answer 
to this issue.  These are some of the numerous troubles that 
this domain is presently facing: 
 
(1) Effect of moving target objects 
(2) Relevance in consumer electronics 
 

 
 
Figure 7: Examples of IF in photography domain. a) 
Back-focus Image b) Fore-focus image c) Fused image 

V. PERFORMANCE EVALUATION METRICS 
 
There are a number of effectiveness assessment indicators 
that are anticipated to be utilized in order to evaluate the 
efficacy of the various approaches to IF strategies.  
 
The mean square error (MSE) is a statistical measure that is 
used to quantify the degree of inaccuracy as well as the 
actual disparity between the ideal and expected outcomes, 
 

 
 

The Structural Similarity Index Metric (SSIM) is a metric 
that determines how structurally analogous two or more 
images are to one another. It is produced by carrying out 
radiometric measurements and mimicking any contrast 
distortion that may occur. There is a combination of 
luminance image distortion, contrast distortion, loss 
correlation, and structural distortion that occurs between the 
source images and the final image. Each of these elements 
contributes to the overall distortion, 
 

 
 

A calculation that determines the ratio of peak power to 
noise value power is based on the peak signal to noise ratio, 
also known as PSNR, 
 

 
The mutual information offers the information amount detail 
of the source images, which are then combined to generate 
the final image from the mutual information. The most 
effective application of the IF method is represented by the 
highest Mutual Information index, 
 

 
 
Entropy, often known as EN, is a measure that is utilized to 
assess the information content of an image. It also generates 
sensitive noise inside the image. An image that contains a 
significant amount of information has a low cross entropy, 
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VI. CONCLUSION 
From the spatial domain to the transform domain to the deep 
learning level, the process of merging medical pictures has 
progressed. The rapid expansion of this sector reflects the 
significant need for computer-assisted clinical diagnostics.  
Numerous fusion procedures have been proposed by 
different researchers, and each offers a distinct set of 
benefits in terms of several significant assessment metrics. 
In contrast, there are around thirty different kinds of 

assessment indices that may be applied to the fusion of 
medical images. In summary, the medical image fusion 
method and other image fusion techniques on medical image 
fusion research in recent years are covered in this article. 
Additionally, it integrates the benefits of several approaches 
and the fusion effect with the recently introduced fusion 
technique. The research platform and data sets related to the 
case of various imaging fusion techniques and the statistical 
research trend are also explored in this work. Deep learning 
research in medical image fusion is the trend that will arise 
in the future, according to the part that came before this one. 
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